m-El prepared Agar ${ }^{1}$

Method 1600
Membrane Filtration
Scope and application: For potable water, nonpotable water, recreation water and wastewater.
1 USEPA accepted.

Test preparation

Before starting

Set the temperature of the incubator to $41 \pm 0.5^{\circ} \mathrm{C}\left(106 \pm 0.9^{\circ} \mathrm{F}\right)$. Let the incubator temperature become stable, then add the samples.

Wash hands thoroughly with soap and water.
Use a germicidal cloth, bactericidal spray, weak bleach solution or weak iodine solution to clean the work area.
Make sure that all of the materials that come in contact with samples are sterile.
During filtration, remove the vacuum as soon as the funnel is empty so that the membrane filter does not become dry.
As an alternative to the filter assembly with flask, use a sterile, disposable filter unit.

Items to collect

Description	Quantity
m-El, prepared agar plates	1
Sterile buffered dilution water	1
Membrane filter, 0.45 micron	1
Filtration apparatus with aspirator or pump	1
Forceps, sterilized	1
Incubator	1
Microscope, low-power	1
Pipet(s) for dilution or for sample volumes less than 100 mL , if necessary	1

Refer to Consumables and replacement items on page 5 for order information.

Sample collection

- Use a sterile glass or plastic container such as a Whirl-Pak bag that contains sterilized sodium thiosulfate. The sodium thiosulfate is not necessary if the sample does not contain a residual disinfectant.
- Open the sample containers immediately before collection and close immediately after collection. Do not put the lid or cap down. Do not touch the lip or inner surfaces of the container. Do not rinse the containers before use.
- To collect a potable water sample from a faucet, spigot, hydrant or pump, let the water flow at a moderate rate for 2-3 minutes. Remove the screens or aerators. Do not use faucets or spigots that have a bad seal or that show a leak between components.
- To collect a non-potable sample from a river, lake or reservoir, hold the container below the water surface, then remove the cap. As an alternative, remove the cap and push the container, mouth down, below the water surface to prevent the collection of surface scum. Put the mouth of the container into the current. Fully fill the container below the water surface.
- Collect a minimum of 100 mL of sample. Keep a minimum of 2.5 cm (1 inch) of air space in the container.
- Write the sample information on the container and start the analysis as soon as possible.
- If immediate analysis is not possible, keep the sample at or below $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ for a maximum of 8 hours. Do not let the sample freeze.

Sample volumes

Use a sample volume that is applicable to the sample type. For samples with a low level of bacteria such as finished, potable water, use 100 mL of sample. Use less sample for non-potable water or water that contains more bacteria.
When the approximate bacteria level is unknown, analyze three different sample volumes. Use the results from the sample volume that shows approximately 20 to 200 colonies for each membrane filter.
When the sample volume is less than 20 mL (diluted or undiluted), add 10 mL of sterile buffered dilution water to the filter funnel before the vacuum is applied. The additional dilution water helps to apply the bacteria equally across the membrane filter.

Sample dilution

Dilute samples that contain a high level of bacteria so that approximately 20 to 200 bacteria colonies grow on the membrane filter. Use the steps that follow to make serial dilutions of the sample.

1. Wash hands thoroughly with soap and water.
2. Invert the sample container for 30 seconds (approximately 25 times).
3. Open a bottle of sterile buffered dilution water.
4. Use a sterile pipet to add 11 mL of sample into the dilution water bottle.
5. Put the cap on the dilution water bottle and invert for 30 seconds (25 times). This is a $10 x$ dilution (sample is diluted by a factor of 10).
6. Add 11 mL of the 10 -fold dilution to another dilution bottle (100 x dilution). Mix well.
7. Add 11 mL of the 100 -fold dilution to the third bottle (1000 x dilution). Mix well.
8. If necessary, continue to dilute the sample.

Membrane filtration test procedure

1. Set up the membrane filtration apparatus. Use a sterile forceps to put a membrane filter in the assembly. Make sure that the grid side is up.

2. Rinse the funnel with 20 to $30-\mathrm{mL}$ of sterile buffered dilution water. Apply the vacuum. Rinse the funnel two more times.

3. Incubate the inverted petri dish at $41 \pm 0.5^{\circ} \mathrm{C}$ ($106 \pm 0.9^{\circ} \mathrm{F}$) for 24 hours.

4. Invert the sample or the diluted sample for 30 seconds (25 times) to make sure that the sample is mixed well.

5. Stop the vacuum when the funnel is empty. Remove the funnel from the filter assembly. Use sterile forceps to lift the membrane filter.

6. Remove the petri dish from the incubator. Use a 10 to $15 x$ microscope to count the number of bacteria colonies on the membrane filter. Refer to Interpret and report the results on page 3.

7. Pour or use a pipet to add the sample into the funnel. If the volume is less than 20 mL , add 10 mL of sterile buffered dilution water to the funnel.

8. Put the membrane filter on the prepared agar plate. Let the membrane filter bend and fall equally across the agar to make sure that air bubbles are not caught below the filter.

9. Apply the vacuum until the funnel is empty. Stop the vacuum.

10. Put the lid on the petri dish and invert the petri dish.

Interpret and report the results

Report the enterococci density as the number of colonies in 100 mL of sample. Use a sample volume that gives 20-80 enterococci colonies on the membrane filter.

If there are more than 200 colonies, dilute the sample and use the diluted sample in the test procedure. Use the sample volume before dilution in the enterococci density determination.

1. Use the microscope to look at the colonies on the membrane filter. Count the number of isolated enterococci colonies.
2. Determine the enterococci density as follows:

Membrane filter(s)	Enterococci density determination
One membrane	Enterococci colonies in $100 \mathrm{~mL}=$ Enterococci colonies counted $\div \mathrm{mL}$
sample $\times 100$	
filter	Example: 50 enterococci colonies were counted. The sample volume was 20 mL. The enterococci density is $50 \div 20 \mathrm{~mL} \times 100=$ 250 enterococci in 100 mL of sample.
	Average enterococci colonies in $100 \mathrm{~mL}=$ Sum of enterococci colonies
Multiple filters,	in all samples \div sum of mL sample $\times 100$
dilutions or	
duplicates for	Example: Two 50-mL samples gave 5 colonies on one filter and each sample 9 colonies on another filter. The enterococci density is $(5+9) \div(50+$ $50) \times 100=14$ enterococci in 100 mL of sample.

3. If colonies are not isolated or if there are more than 200 colonies of all types:
a. Report the results as "Confluent growth with or without enterococci" when the bacteria grows together across some or all of the membrane filter.
b. Do the test procedure again with half the sample volume. If the total number of colonies is more than 200 for each membrane or the colonies are not isolated, report the results as "Too numerous to count" (TNTC).
c. Do the test procedure again with a dilution that gives approximately 50 enterococci colonies and not more than 200 colonies of all types.

Bacteria disposal

Make sure to kill the cultured bacteria before disposal. Refer to Bacteria disposal on page 5 to sterilize with a microwave or an autoclave.
Use one of the methods that follow to kill the cultured bacteria before disposal:

- Hypochlorite (bleach) solution can also be used. Add 1-2 mL of hypochlorite (bleach) solution to each test container. If a container has a lid, do not close it too tightly. Put the container in the microwave at $70-80^{\circ} \mathrm{C}\left(158-176{ }^{\circ} \mathrm{F}\right)$ for 50 seconds. Wait 10 to 15 minutes. Pour the liquid down the drain.
- Kill the cultured bacteria with autoclave pressure. Put the used test containers in a contaminated items bag or biohazard bag to prevent leaks. Do not seal the bag. Put the bag in the autoclave at $121^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$ for 30 minutes at 15 lb of pressure. When the bag is cool, seal it and put it into a garbage bag. Make sure to tie the garbage bag tightly.

Figure 1 Bacteria disposal

Summary of method

Enterococci bacteria are used as an indicator organism for water quality evaluation. The m -El Agar finds enterococci in 24 hours after enzymatic cleavage of a substrate (indoxyl-β-D-glucoside), which forms colonies that are surrounded by a blue halo.
The membrane filtration procedure is used for samples that are low in turbidity and have low bacteria counts. The sample is poured through a membrane filter. The bacteria in the sample stays on the membrane filter. The membrane filter is moved to a petri dish that contains a nutritional broth or agar. During incubation, the bacteria grow and form colonies on the membrane filter. After incubation, the filter is examined with a microscope for bacteria colonies.

Consumables and replacement items

Required reagents

Description	Quantity/test	Unit	Item no.
m-El, prepared agar plates	1	$15 / \mathrm{pkg}$	2811715
Dilution water, buffered, 99 mL, sterile 1	1	$25 / \mathrm{pkg}$	1430598

Required apparatus

Description	Unit
Membrane filter holder, magnetic, $300-\mathrm{mL}$ funnel	each
Filter pump, aspirator	each
Flask, filtering, glass, 1000 mL	each
Forceps, stainless steel	each
Membrane filter, 0.45 micron, 47 mm diameter, sterile	$200 / \mathrm{pkg}$
Membrane filter, 0.45 micron, 47 mm diameter, sterile EO (ethylene oxide)	1352900
Microscope, compound	$150 / \mathrm{pkg}$

[^0]Required apparatus (continued)

Description	Unit	Item no.
Pipet, serological, $10-11 \mathrm{~mL}$, sterile, disposable	$25 / \mathrm{pkg}$	209798
Pipet filler, safety bulb	each	1465100
Pipet, TenSette ${ }^{\circledR}, 1.0-10.0 \mathrm{~mL}$	each	1970010
Pipet tips, TenSette, $1.0-10.0 \mathrm{~mL}$, sterile, individually wrapped	$50 / \mathrm{pkg}$	2558996
Stopper, rubber, size 8, for filtration assembly	$6 / \mathrm{pkg}$	211908
Tubing, rubber, $7.9 \mathrm{~mm}(5 / 16-\mathrm{in}$.$) inside diameter$	$3.66 \mathrm{~m} \mathrm{(12} \mathrm{ft)}$	56019

Incubators

Description	Unit	Item no.
Laboratory incubator, culture, 110 VAC	each	2619200
Laboratory incubator, culture, 230 VAC	each	2619202
Portable incubator with 12 VDC power socket	each	2569900
AC power supply for portable incubator, 110-240 VAC	each	2968100
Battery pack, rechargeable, for portable incubator 12 VDC	each	2580300
Portable incubator rack, general purpose/petri dish	each	2580502

Sample collection

Description	Unit	Item no.
Sampling bags, Whirl-Pak ${ }^{\circledR}$ with dechlorinating reagent, 177 mL	$100 / \mathrm{pkg}$	2075333
Sampling bags, Whirl-Pak without dechlorinating reagent, 207 mL	$100 / \mathrm{pkg}$	2233199
Sampling bottles, sterilized, with dechlorinating agent, 100-mL sample	$100 / \mathrm{pkg}$	8888006
Sampling bottles, sterilized, without dechlorinating reagent, 100-mL sample	$12 / \mathrm{pkg}$	2495012
Sampling bottles, sterilized, without dechlorinating reagent, 100-mL sample Sample transport kit, includes 100 sample bags with dechlorinating agent, refrigerant pack, rack and 9-L cooler	50/pkg	2495050

[^0]: ${ }^{1}$ Buffered dilution water is prepared with magnesium chloride and potassium dihydrogen phosphate.

